Max. Marks: 60

Reg. No.	:	 	•••	 	•••	 	 •••	 	•••	
Name :		 				 				

Second Semester M.C.A. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, May 2025 (2021 Admission Onwards) MCA2 C01 : ALGORITHMS AND DATA STRUCTURES

Time : 3 Hours

SECTION - A

Answer all questions. Each Question carries two marks

- What is an algorithm ? Explain its characteristics.
- 2. What do you mean by backtracking?
- 3. Explain time complexity and space complexity.
- 4. Differentiate between NP Hard and NP complete problems.
- 5. Define arrays.
- 6. List out the applications of stack.
- 7. What is a tree ? Represent a binary tree.
- 8. Explain BST.
- 9. What is a graph? List out the applications of graph.
- 10. Explain directed graph and acyclic graph.

(10×2=20)

SECTION - B

Answer all questions. Each question carries eight marks.

 a) Explain the steps involved in the development of an algorithm with a neat diagram.

OR

- Explain any three asymptotic notations used to express the complexity of algorithm with the help of suitable examples.
- 12. a) What do you mean by priority queue ? Write an algorithm to insert an element into a priority queue.

OR

- b) Write an algorithm to convert an infix expression into its equivalent postfix expression. Convert the expression ((A/(B D + E)) *(F G) *H) to postfix form. Show each step in the conversion including the stack contents.
- 13. a) Explain PUSH and POP of operations of a stack with an example.

OR

- b) What do you mean by a circular linked list? Write an algorithm to perform insert and delete operations on a circular linked list.
- 14. a) Write and discuss algorithm to insert an element to binary search tree. Show the structure of the binary search tree after adding each of the following values in that order: 2, 5, 1, 7, 10, 9, 11, 6.

OR

- b) Explain all types of binary tree. Describe preorder, inorder, postorder tree traversal of tree with the help of an example.
- 15. a) Illustrate depth first search algorithm.

OR

b) Explain with an example binary search on a linear array. (5×8=40)