Reg. No. :

Second Semester M.C.A. Degree (CBSS – Reg./Supple./Imp.) Examination, May 2025 (2021 Admission Onwards) Stream 6 – Software Engineering MCA 2E01: OPERATION RESEARCH

Time: 3 Hours

Max. Marks: 60

PART - A

Answer all questions. Each question carries 2 marks.

- 1. Define the general form of a linear programming problem.
- 2. Distinguish between slack and surplus variables.
- 3. Write the dual of the LPP

Maximize $Z = 2x_1 + 5x_2$

Subject to:

$$2x_1 + x_2 \ge 2$$

$$X_1$$
 $X_2 \ge 0$

- 4. What is travelling salesmen problem?
- Differentiate between linear programming problems and integer programming problems.
- 6. Define:
 - a) Stage.
 - b) State.
- 7. Describe the basic terminology of sequencing problems.
- 8. What are the conditions for the optimal solutions in processing 'n' jobs through 'm' machines?
- 9. Describe different behavior of arrivals in a queueing system.
- 10. What is FCFS?

 $(10 \times 2 = 20)$

PART - B

Answer all questions. Each question carries 8 marks.

11. a) Solve the following LPP graphically.

a) Solve the following LPP graphically. Minimize
$$Z=3x_1+5x_2$$
 Subject to :
$$-3x_1+4x_2\leq 12\\ 2x_1-x_2\geq -2\\ 2x_1+3x_2\geq 12\\ x_1\leq 4\\ x_2\geq 2\\ x_1,x_2\geq 0\\ OR$$
 b) Solve the LPP using Simplex method. Maximize $Z=7x_1+5x_2$ Subject to :
$$x_1+2x_2\leq 6\\ 4x_1+3x_2\leq 12\\ x_1,x_2\geq 0$$
 . a) Solve the following using Dual simplex method. Minimize $Z=2x_1+x_2$ Subject to :
$$3x_1+x_2\geq 3$$

Maximize
$$Z = 7x_1 + 5x_2$$

Subject to:

$$x_1 + 2x_2 \le 6$$

 $4x_1 + 3x_2 \le 12$
 $x_1, x_2 \ge 0$

12. a) Solve the following using Dual simplex method.

Minimize
$$Z = 2x_1 + x_2$$

Subject to :

$$3x_1 + x_2 \ge 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \ge 3$$

$$x_1, x_2 \ge 0$$
OR

b) Find the initial feasible solution to the following transportation problem.

Plant	W_1	W_2	W_3	W_4	Availability
F,	11	20	7	8	50
F ₂	21	16	10	12	40
F ₃	8	12	18	9	70
Requirement	30	25	35	40	

13. a) Solve the following LPP using cutting plane method.

Maximize
$$Z = x_1 + x_2$$

Subject to:

$$3x_1 + 2x_2 \le 5$$

 $x_2 \le 2$
 $x_1, x_2 \ge 0$
OR

- b) Explain the characteristics of dynamic programming problems.
- a) Describe the key differences between PERT and CPM.

OR

- b) Define critical path analysis and its purpose in project management.
- 15. a) Explain queueing system with the help of a flow chart and examples.

OR

b) What are the classifications of stochastic processes ?

 $(5 \times 8 = 40)$