

Reg. No. :

Name :

III Semester B.Sc. Degree (CBCSS – OBE – Supplementary/Improvement)

Examination, November 2025

(2023 Admission)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS FOR BSC ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 3C03MAT-AIML: Differential Equations and Fourier Series

Time: 3 Hours

Max. Marks: 40

PART – A (Short Answer)

Answer all questions from this Part. Each question carries 1 mark.

 $(6 \times 1 = 6)$

- 1. Define degree of a differential equation.
- 2. Define Wronskian.
- 3. State the order of the ODE $x^2y'' + \pi y^3 = 0$.
- 4. Verify that $y = 5e^{-2x} + 2x^2 + 2x + 1$ is a solution of $y' + 2y = 4(x + 1)^2$.
- 5. Solve y' = ky.
- 6. Define an even function in the context of Fourier series.

PART – B (Short Essay)

Answer any six questions from this Part. Each question carries 2 marks. (6x2=12)

- 7. Solve $y' + (x + 2) y^2 = 0$.
- 8. Find the integrating factor of ydx xdy = 0.
- 9. Solve $\frac{dy}{dx} = xy + x$.
- 10. Find the Wronskian of e^{2x} and e^{-2x} .

K25U 3077

- 11. Find the general solution of $\frac{d^2y}{dx^2} 4y = 0$.
- 12. Find a differential equation whose solution is cos3x.
- 13. Show that sum of two odd function is odd.
- 14. Write down the Euler formulae for calculating the Fourier coefficients of functions f(x) of period 2π .

Answer any four questions from this Part. Each question carries 3 marks. (4×3=12)

- 15. Solve the initial value problem $y' + y \tan x = \sin 2x$, y(0) = 1.
- 16. Solve $xy' + y = xy^{\frac{3}{2}}$, y(1) = 4.
- 17. Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} 10y = e^{2x}$.
- 18. Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = \cos 5x$.
- 19. Find the Fourier cosine transform of f(x) = 1 if 0 < x < a and f(x) = 0 if x > a.
- 20. Expand the function defined by f(x) = 0 if -2 < x < 0 and f(x) = x if $0 \le x < 2$ as a Fourier series on [-2, 2].

Answer any two questions from this Part. Each question carries 5 marks. (2x5=10)

- 21. Check the exactness and solve $(2xy^2 + y) dx + (2y^3 x) dy = 0$.
- 22. Solve the initial value problem $(y + \sqrt{x^2 + y^2})dx xdy = 0$, y(1) = 0.
- 23. Find the general solution of $y'' + 4y' + 4y = e^{-x} \cos x$.
- 24. Find a Fourier series that represents f(x) = |x| in $[-\pi, \pi]$ and deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$