Reg. No. : \qquad
Name: \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-ul-Ulama Degree (CCSS-Reg./Supple./Imp.) Examination, November 2014

Open Course

5D01 MAT : BUSINESS MATHEMATICS

Time: 2 Hours
Max. Weightage : 20
Instruction : Answer to all questions.
PART - A

This Part consists of two bunches of questions carrying equal weightage of one. Each bunch consists of four objective type questions. Answer all questions.
I. 1) The domain of the absolute value function $y=|u|$ is \qquad
2) $\operatorname{lmt}_{x \rightarrow 0} \frac{\log (1+x)}{x}=$ \qquad
3) If u and v are any functions of x then $\frac{d}{d x}(u v)=$ \qquad
4) For points of local maximum $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}$ is \qquad (W. = 1)
II. 5) $\int 1 d x=$ \qquad
6) $\int e^{m n} d x=$ \qquad
7) If the rate of interest $r_{1} \%$ for first n_{1} years and $r_{2} \%$ for the next n_{2} years and $r_{3} \%$ for next n_{3} years, then amount due is \qquad .
8) $\int[($ Marginal Revenue $)-($ Marginal Cost $)] d x+k .=$ \qquad (W. = 1)
PART - B

Answer any six questions in one or two sentences each. Each questions carries a weightage of one.
9) Evaluate $\operatorname{lmt}_{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$.
10) Discuss the continuity of $f(x)=\frac{|x|}{x}$ at $x=0$.
11) Differentiate $2 x^{4}+3 x^{3}-6 x^{2 / 3}+\frac{1}{\sqrt{x}}$ with respect to x.
12) Find $\frac{d y}{d x}$ if $y=\frac{\sqrt{x}-1}{\sqrt{x}+1}$.
13) Evaluate $\int\left(x^{2}+1\right)\left(2 x^{3}-3\right) d x$.
14) Evaluate $\int x e^{a x} d x$.
15) What is the effective rate of interest if the nominal rate is 5% p.a and is convertible quarterly?
16) If the demand function is $p=16-x^{2}$, find consumer surplus.
17) The supply function of a product is $y=3 x^{2}+6$. Find the producer's surplus when 10 units are supplied.
18) How can $\frac{a}{r}$ be taken as the present value of an income stream of Rs. a per annum for ever when interest at 100 r per cent is compounded yearly?

PART-C

Answer any 4 questions. Each carries wt. - 2
19) Evaluate $\frac{\operatorname{lmt}}{x \rightarrow \infty} \frac{(x+1)(2 x+3)}{(x+2)(3 x+4)}$.
20) Show that the function $f(x)=3 x^{2}+2 x-1$ is continuous at $x=2$.
21) If $f(x+y)=f(x) f(y)$ for all x and y and $f(5)=2$ and $f^{\prime}(0)=3$ and find $f^{\prime}(5)$.
22) If $y=a e^{m x}+b e^{-m x}$ prove that $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$.
23) A company has a demand curve given by the function $2 Q+3 P=160$. The average cost curve of the firm is given by $A C=3 Q^{2}+18 Q+63+\frac{5}{Q}$. Find the level of output which maximise the total revenue.
24) Evaluate the integral $\int x^{3} e^{x^{2}} d x$.
25) The marginal cost function of a firm is given by $M C=3000 e^{0.3 x}+50$ when x is quantity produced. If fixed cost is Rs. 80,000 find the total cost function of the firm.
26) Ram deposited a sum of Rs. 10,000 / in a bank. After 2 years, he withdrew Rs. 4,000/- and at the end of 5 years he received an amount of Rs. 7,520/-. Find the rate of simple interest.
(W. $=4 \times 2=8$)

PART-D

Answer any one. Wt-4.
27) A machine costing Rs. 20,000/- is sold for Rs. 5,000/- down and the balance payable is semi annual installments in the next five years. What is this instalment if interest is :

1) 4% compounded semi-annually.
2) 4% compound annually ?
3) For a certain establishment the total cost function C and the total revenue function R are given by $C=x^{3}-12 x^{2}+48 x+11$ and $R=83 x-4 x^{2}-21$ where $x=$ output. Obtain the output for which profit is maximum and the maximum profit.
4) If $x^{y}+y^{x}=a^{b}$ find $\frac{d y}{d x}$.
(W. $=1 \times 4=4$)
