

M 7773

Reg. No. :				
Name :				

I Semester B.Sc. Degree (CCSS – Supple./Improve.) Examination, November 2014 COMPLEMENTARY COURSE IN MATHEMATICS 1C 01 MAT : Algebra and Geometry (2013 and Earlier Admn.)

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) _____ is an example of a nonabelian group.
 - b) _____ is an example of a two dimensional vector space.
 - c) _____ is an example of a field.
 - d) _____ is a subspace of IR³.

(Weightage - 1)

Answer any six from the following (Weightage 1 each) :

- 2. Find the span of $\{(1, 1), (2, 2)\}$ in \mathbb{IR}^2 .
- 3. Prove or disprove that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (2x_1, 3x_2)$ is a linear transformation.
- 4. Check whether the set of all $f \in \mathcal{C}[0, 1]$ such that $f\left(\frac{3}{4}\right) = 1$ is a subspace of $\mathcal{C}[0, 1]$.
- 5. Show that in a vector space V any set of vectors containing the zero vector is linearly dependent.
- 6. Let $T: U \rightarrow V$ be a linear map. Then prove that T(-u) = -T(u).
- 7. Can we produce any number of basis in a vector space. Why?
- 8. Define eigen value of a matrix.

- 9. Can polar coordinates have negative values ? Explain.
- 10. Write equations relating rectangular (x, y, z) and cylindrical (r, θ , z) co-ordinates.
- 11. Find an equation for the cylinder $x^2 + (y 3)^2 = 9$ in cylindrical co-ordinates. (Weightage 6×1=6)

Answer any seven from the following (weightage 2 each) :

- 12. Let S be a nonempty subset of a vector space V. Then prove that [S], the span of S, is a subspace of V.
- 13. Let U_1 and U_2 be two subspaces of a vector spce V. Then prove that $U_1 \cap U_2$ is also a subspace of V.
- 14. Prove that in an n-dimensional vector space V, any set of n linearly independent vector is a basis.
- 15. Prove that a linear transformation on a 1-dimensional vector space is nothing but multiplication by a fixed scalar.
- 16. Determine whether there exists a linear map $T: V_2 \rightarrow V_2$ such that T(2, 1) = (2, 1) and T(1, 2) = (4, 2). If it exists write the general formula otherwise give reasons.
- 17. Find the rank of the matrix :

3	-1	2]	
- 6	2	4	
3	1	2	

18. Using Cayley Hamilton theorem, show that $A^3 - 6A^2 + 11A - 6I = 0$ where

SI.	1	1	2	
A =	0	2	2	inearly dependent.
	_ 1	1	3	Let $T: U \rightarrow V$ be a linear map. Then prove that $T(-u) = -T(u)$.

19. Investigate the values of λ and μ so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, $2x + 3y + \lambda z = \mu$ have no solution.

20. Solve the system of equations :

2x - y + z = 7, 3x + y - 5z = 13, x + y + z = 5.

21. Show that if $\lambda \neq -5$, the system of equations :

3x - y + 4z = 3, x + 2y - 3z = -2, $6x + 5y + \lambda z = -3$ have a unique solution.

22. Show that the transpose A^T has the same eigen values of A. (7×2=14)

Man general an aroun

Answer any three from the following (Weightage 3 each) :

- 23. Find the eigen values and the corresponding eigen vectors of the matrix :
 - 2
 2
 1

 1
 3
 1

 1
 2
 2
- 24. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ and find its
- 25. 1) Convert the polar equation r = 8 sinθ into Cartesian equation.
 2) Convert the Cartesian equation y² = 4x into polar equation.
- 26. Translate $x^2 + y^2 + (z \frac{1}{2})^2 = \frac{1}{4}$ into cylindrical and spherical system. (Weightage : 3×3=9)