

Reg. No.:	
Name	

IV Semester B.C.A. Degree (CCSS – Reg./Supple./Improve.) Examination, May 2015 COMPLEMENTARY COURSE IN MATHEMATICS FOR B.C.A. 4 C 04 MAT (BCA) : Operation Research

Time: 3 Hours

Max. Weightage: 30

Answer all questions. Weightage for a bunch of 4 questions is 1.

- 1. Fill in the blanks :
 - a) A feasible solution which optimises the objective function is known as
 - b) The variables whose values are not restricted to zero in the current basic solution are listed in one column of the Simplex table is known as _____
 - c) A price which indicates the amount by which the optimal value of the objective function would change if any constraint is changed marginally is called
 - d) Activities which do not take time or resources are known as ____
 - e) The name of the probability distribution used in PERT which estimates the expected duration and the expected variance of the activity is _____
 - f) A linear programming problems in which all the variables in the optimum solution is restricted to assume non negative integer value is called
 - g) The Dynamic Programming technique was developed by ______ in 1950.
 - h) The time between starting the first job and completing the last job is known as ______ (Wt : 2×1=2)

M 8566

M 8566

Answer any 6 questions (Wt: 1 each).

- 2. Write the standard form of an LPP.
- 3. How to find the dual of a given primal?
- 4. Distinguish between CPM and PERT.
- 5. Write the Mathematical formulation of a Transportation Problem.
- 6. Give the different phases in the application of Network technique.
- 7. What do you meant by Travelling Salesman problem ?
- 8. Write the Mathematical modelling of integer programming problem.
- 9. Give the difference between Dynamic Programming and Linear Programming.

-2-

10. What is meant by "no passing rule" in sequencing ?

(Wt: 6×1=6)

Answer any 7 questions (Wt: 2 each).

- 11. Solve the following LPP by graphical method.
 - Max: $Z = 2x_1 + 3x_2$

S.t: $x_1 + x_2 \le 30$

 $x_2 \ge 3$

$$0 \le x_2 \le 12$$

 $x_1 \le y_2 \le 0$ are sectored to and exist to to doldwreattivitoA, the

$$x_1 - x_2 \le 0$$

 $0 \le x_1 \le 20$; $x_1, x_2 \ge 0$.

12. Write down the dual of the following problem :

Min: $Z = 2x_1 + 3x_2$ S.t: $x_1 + x_2 \ge 10$ $2x_1 + 3x_2 \ge 24$ $x_1, x_2 \ge 0.$

13. Find the initial feasible solution to the transportation problem given below by north west corner rule.

-3-

		Des	tinatio	on	
Origin		D ₁	D ₂	D ₃	Supply
	0,	2	7	4	Use Beliman's principal of optimality to find is
	02	3	3	1	Maximize Z = x ₁ x ₂ x ₃ x ₃
	03	5	4	7	7 $8 = e^{x} + e^{x} + e^{x}$
	04	1	6	2	140 s x bn80 s x 0 s x
Demand		7	9	18	There are 5 lobs each of which is to be more a

14. Solve the following minimal assignment problem :

		Man						
		1	2	3	4			
lob	1	12	30	21	15			
	11	18	33	9	31			
	111	44	25	21	21			
	IV	14	30	28	14			

15. The following table gives the activities in a construction project and other relevant information.

Activity	1-2	1-3	2-3	2-4	3-4	4-5
Duration	20	25	10	12	6	10

- i) Draw the network for the project.
- ii) Which are the critical activities ?

M 8566

16. Use Branch and Bound Technique, solve the following :

Max: $Z = 2x_1 + 2x_2$ S.t: $5x_1 + 3x_2 \le 8$ $x_1 + 2x_2 \le 4$

 $x_1, x_2 \ge 0$ and integers.

[Use graphical method to solve the LPP]

17. Use Bellman's principal of optimality to find the optimum solution.

18. There are 5 jobs each of which is to be processed through two machines M_1 and M_2 in the order M_1 , M_2 . Processing hours are given below.

Job :	Α	B	С	D	E
M ₁ (time in hrs) :	4	9	6	8	5
M ₂ (time in hrs) :	5	11	7	6	9

- Determine optimum sequence for the job. Also find total minimum time elapsed. Find also the ideal time of the two machines.
- 19. Solve the following LPP by Big. M method.

Min: $Z = 5x_1 + 6x_2$ S.t: $2x_1 + 5x_2 \ge 1500$ $3x_1 + x_2 \ge 1200$ $x_1 \ge 0 \text{ and } x_2 \ge 0.$

20. Distinguish between AP and TP.

21. Explain how 'n' jobs on 'm' machines problem can be solved.

Answer any two questions (Wt: 4 each).

22. Solve by two phase method.

Min: $t = 6x_1 + 5x_2$

S.t:

 $x_1 + 2x_2 \ge 60$ $x_1 \ge 0$; $x_2 \ge 0$.

 $2x_1 + x_2 \ge 80$

(Wt: 7x2=14)

-5-

23. The following table lists the jobs of a network along with their time estimate.

Job	Duratio	n (days)	
1 1	Optimistic	Most likely	Pessimistic
1-2	3	6	15
1-6	2	5	14
2-3	6	12	30
2-4	2	5	8
3-5	5	11	17
4-5	3	6	15
6-7	3	9 🔥	27
5-8	1	4	7
7-8	4	19	28

1) Draw the project network.

2) Calculate the length and variance of critical path.

3) Find due data which has 95% chance to meet.

24. Solve the following TP.

			То					
		W ₁	W ₂	W ₃	W4	W ₅		Available
From	F ₁	3	4	6	8	9	20	
	F2	2	10	1	5	8	30	
	F ₃	7	11	20	40	3	15	
	F ₄	2	1	9	14	16	13	
Required		40	6	8	18	6		

(Wt: 2×4=8)