Reg. No.: \qquad
Name: \qquad

IV Semester B.C.A. Degree (CCSS - Reg./Supple./Improve.)
 Examination, May 2015
 COMPLEMENTARY COURSE IN MATHEMATICS FOR B.C.A. 4 C 04 MAT (BCA) : Operation Research

Time: 3 Hours

Max. Weightage : 30
Answer all questions. Weightage for a bunch of $\mathbf{4}$ questions is $\mathbf{1}$.

1. Fill in the blanks :
a) A feasible solution which optimises the objective function is known as
b) The variables whose values are not restricted to zero in the current basic solution are listed in one column of the Simplex table is known as \qquad
c) A price which indicates the amount by which the optimal value of the objective function would change if any constraint is changed marginally is called
d) Activities which do not take time or resources are known as \qquad
e) The name of the probability distribution used in PERT which estimates the expected duration and the expected variance of the activity is \qquad
f) A linear programming problems in which all the variables in the optimum solution is restricted to assume non negative integer value is called
g) The Dynamic Programming technique was developed by \qquad in 1950.
h) The time between starting the first job and completing the last job is known as \qquad

Answer any 6 questions (Wt : 1 each).

2. Write the standard form of an LPP.
3. How to find the dual of a given primal ?
4. Distinguish between CPM and PERT.
5. Write the Mathematical formulation of a Transportation Problem.
6. Give the different phases in the application of Network technique.
7. What do you meant by Travelling Salesman problem?
8. Write the Mathematical modelling of integer programming problem.
9. Give the difference between Dynamic Programming and Linear Programming.
10. What is meant by "no passing rule" in sequencing?
(Wt : $6 \times 1=6$)
Answer any 7 questions (Wt : 2 each).
11. Solve the following LPP by graphical method.

Max: $Z=2 x_{1}+3 x_{2}$
S.t :

$$
\begin{aligned}
& x_{1}+x_{2} \leq 30 \\
& x_{2} \geq 3 \\
& 0 \leq x_{2} \leq 12 \\
& x_{1}-x_{2} \leq 0 \\
& 0 \leq x_{1} \leq 20 ; x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

12. Write down the dual of the following problem:

Min: $\quad Z=2 x_{1}+3 x_{2}$
S.t :

$$
\begin{gathered}
x_{1}+x_{2} \geq 10 \\
2 x_{1}+3 x_{2} \geq 24 \\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

13. Find the initial feasible solution to the transportation problem given below by north west corner rule.

Destination

Origin		D_{1}	D_{2}	D_{3}	
	O_{1}	2	7	4	5
	O_{2}	3	3	1	8
	O_{3}	5	4	7	7
	O_{4}	1	6	2	14
	14				
Demand		7	9	18	

14. Solve the following minimal assignment problem :

		Man			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Job	I	12 30 21 15 II 18 33 9 31 III 44 25 21	21		
	IV	14	30	28	14

15. The following table gives the activities in a construction project and other relevant information.
Activity $1-2$
Duration 20
20
1-3
2-3
2-4 3-4
4-5
Duration
25
10
12
6
10
i) Draw the network for the project.
ii) Which are the critical activities ?
16. Use Branch and Bound Technique, solve the following :

Max: $Z=2 x_{1}+2 x_{2}$
S.t :

$$
\begin{aligned}
5 x_{1}+3 x_{2} & \leq 8 \\
x_{1}+2 x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0 \text { and integers. }
\end{aligned}
$$

[Use graphical method to solve the LPP]
17. Use Bellman's principal of optimality to find the optimum solution.

Maximize :

$$
\begin{aligned}
z= & x_{1} \cdot x_{2} \cdot x_{3} \\
& x_{1}+x_{2}+x_{3}=5 \\
& x_{1} \geq 0, x_{2} \geq 0 \text { and } x_{3} \geq 0 .
\end{aligned}
$$

18. There are 5 jobs each of which is to be processed through two machines M_{1} and M_{2} in the order M_{1}, M_{2}. Processing hours are given below.

Job :	A	B	\mathbf{C}	\mathbf{D}	\mathbf{E}
$\mathbf{M}_{\mathbf{1}}$ (time in hrs) :	4	9	6	8	5
$\mathbf{M}_{\mathbf{2}}$ (time in hrs) :	5	11	7	6	9

1) Determine optimum sequence for the job. Also find total minimum time elapsed.

Find also the ideal time of the two machines.
19. Solve the following LPP by Big. M method.

Min: $Z=5 x_{1}+6 x_{2}$
S.t: $\quad 2 x_{1}+5 x_{2} \geq 1500$

$$
3 x_{1}+x_{2} \geq 1200
$$

$$
\mathrm{x}_{1} \geq 0 \text { and } \mathrm{x}_{2} \geq 0 .
$$

20. Distinguish between AP and TP.
21. Explain how ' n ' jobs on ' m ' machines problem can be solved.
(Wt : 7×2=14)
Answer any two questions (Wt : 4 each).
22. Solve by two phase method.

Min: $t=6 x_{1}+5 x_{2}$
S.t: $\quad 2 x_{1}+x_{2} \geq 80$

$$
\begin{aligned}
& x_{1}+2 x_{2} \geq 60 \\
& x_{1} \geq 0 ; x_{2} \geq 0 .
\end{aligned}
$$

23. The following table lists the jobs of a network along with their time estimate.

Job	Duration (days) Optimistic Most likely	Pessimistic	
i j	3	6	15
$1-2$	2	5	14
$1-6$	6	12	30
$2-3$	2	5	8
$2-4$	5	11	17
$3-5$	3	6	15
$4-5$	3	9	27
$6-7$	1	4	7
$5-8$	4	19	28

1) Draw the project network.
2) Calculate the length and variance of critical path.
3) Find due data which has 95% chance to meet.
24. Solve the following TP.

From		W_{1}	W_{2}	W_{3}	W_{4}	W_{5}		Available
	F_{1}	3	4	6	8	9	20	
	F_{2}	2	10	1	5	8	30	
	F_{3}	7	11	20	40	3	15	
	F_{4}	2	1	9	14	16	13	
Required		40	6	8	18	6		

(Wt : $2 \times 4=8$)

