Reg. No. :
Name: \qquad

Second Semester B.Sc. Degree Examination, May 2010 MATHEMATICS (Core)

Course No. 2 : $2 \mathrm{2B} 02$ MAT : Foundation of Higher Mathematics

Time: 3 Hours
Maximum Weightage : 30

Fill the blanks :

1. a) For $|\mathrm{x}|<1,1-\mathrm{x}+\mathrm{x}^{2}-\mathrm{x}^{3}+\ldots .=$ \qquad
b) Sum of the series $2\left[1+\frac{1}{3!}+\frac{1}{5!}+\ldots ..\right]=$ \qquad
c) Coefficient of x^{n} in the expansion of $2 x e^{2 x}$ is \qquad
d) $\mathrm{n}^{\text {th }}$ term of the series $\frac{9}{1!}+\frac{16}{2!}+\frac{27}{3!}+\frac{42}{4!}+$
(Weightage 1)
2. a) $f(x)=x^{2}, 9(x)=x+3$ then $(g \circ f)(2)=$ \qquad
b) The set $[a]=\{x \in A: x \sim a\}$ where \sim is an equivalence relation on set A is called \qquad
c) A partition of set $\mathrm{X}=\{1,2,3,4\}$ is \qquad
d) Domain of $f(x)=\sqrt{25-x^{2}}$ is \qquad (Weightage 1)
Answer any five from the following : (Weightage 1 each)
3. Sum the series $\frac{1}{2!}+\frac{1+2}{3!}+\frac{1+2+3}{4!}+$ \qquad
4. Sum the series $1+\frac{1}{3}+\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+$ \qquad
P.T.O.
5. Suppose $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=(1,2\}$. Then find the number of functions from A to B which are onto.
6. $R=\{(1,2),(1,3),(3,1),(3,3),(2,3)\}$ is a relation on $A=\{1,2,3\}$ find $R \circ R$.
7. Sketch the product set $[-3,2) \times(-2,2]$ in the plane R^{2}.
8. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{2}{3} \mathrm{n}+\frac{4}{5}$ find the formula for $\mathrm{f}=(\mathrm{x})$.
9. Define partial order on a set S.
10. Suppose the set $\mathrm{P}=\{1,2,3 \ldots\}$ of positive integers is ordered by divisibility. Insert the Correct Symbol $<, \geq$ or $\|$ between each pair of numbers.
a) $2-8$
b) $18-24$
c) $9-3$
d) $5-15$
(Weightage $5 \times 1=5$)
Answer any seven from the following : (Weightage 2 each)
11. Let A be a set of non-zero integers and let \approx be a relation on $\mathrm{A} \times \mathrm{A}$ defined as follows $(\mathrm{a}, \mathrm{b}) \approx(\mathrm{c}, \mathrm{d})$ whenever $\mathrm{ad}=\mathrm{bc}$. Prove that \approx is an equivalence relation.
12. Let $\mathrm{A}=\{1,2,3,4,6\}$. Let R be a relation on A defined by x divides y .
a) Write R as a set of ordered pairs
b) Draw its directed graph
c) Find the inverse relation R^{-1} of R
d) $\mathrm{Can} \mathrm{R}^{-1}$ be described in words.
13. Sketch the relation $3 x^{2}+4 y^{2} \leq 12$. Find the domain of this relation.
14. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$. Then if g of is one-to-one prove that f is one-to-one.
15. Define a partial order relation on a set S . When S is linearly ordered. Give an example of a set with a partial order which is not linearly ordered.
16. Define a lattice, sub-lattice and isomorphic lattices.
17. Consider the relation $\mathrm{R}=\{(1,1),(1,3),(2,4),(3,1),(3,2)\}$ on $\mathrm{A}=\{1,2,3,4\}$ find :
a) Reflexive closure of R
b) Symmetric closure of R
c) Transitive closure of R.
18. Solve the equation $x^{3}-9 x^{2}+23 x-15=0$ whose roots are in arithmetical progression.
19. If α, β, γ are the roots of the equation $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$. Find the real value of $\Sigma \alpha^{2} \beta$.
20. Find the equation whose roots are the roots of the equation $x^{4}-5 x^{3}+7 x^{2}-17 x+11=0$ each diminished by 4.
(Weightage $7 \times 2=14$)
Answer any three from the following: (Weightage 3 each)
21. Show that $\sum_{n=0}^{\infty} \frac{5 n+1}{(2 n+1)!}=\frac{e}{2}+\frac{2}{e}$.
22. Sum to infinities the series $\frac{1}{1.2 .3}+\frac{1}{5.6 .7}+\frac{1}{9.10 .11}+\ldots .$.
23. Let L be a Lattice. Then prove that :
i) a $\wedge b=a$ if and only if $a \vee b=b$
ii) The relation $\mathrm{a} \leq \mathrm{b}$ defined by $\mathrm{a} \wedge \mathrm{b}=\mathrm{a}$ is a partial order relation on L .
24. Solve the equation $x^{3}-21 x-344=0$ by Cardan's method.
25. If the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ be α, β, γ find the equation whose roots are $\alpha^{2}+\beta^{2}, \beta^{2}+\gamma^{2}, \gamma^{2}+\alpha^{2}$.
(Weightage $3 \times 3=9$)
