\qquad

Second Semester B.Sc. Degree Examination, May 2010 STATISTICS (Complementary)

Course No. 2: 2C02 STA : Probability Theory and Random Variables
Time : 3 Hours
Total Weightage : 30
Instruction : Use of calculators and statistical tables permitted.
PART - A

Answer any 10 questions :
(Weightage 1 each)

1. Give the classical definition of Probability.
2. What is statistical regularity?
3. A coin is tossed continuously, till head appears for the first time. Write down the sample space.
4. What is the probability that a leap year selected at random will contain 53 Sundays?
5. State the addition rule for two events.
6. If A, B, C are three events defined on the same sample space, state the condition for their total independence.
7. Explain conditional probability giving an example.
8. A random variable X has the following density function :
$f(x)=\frac{k}{1+x^{2}} ;-\infty<x<\infty$. Find the value of k.
9. State the important properties of distribution function.
10. The joint density function of X and Y is
$f(x, y)=\left\{\begin{array}{cc}8 x y & \text { if } 0<x<y<1 \\ 0 & \text { otherwise }\end{array}\right.$
Find the marginal density function of Y.
11. Two random variables X and Y have the following joint distribution :

\mathbf{Y}	1	2
\mathbf{X}	$\frac{1}{30}$	$\frac{2}{30}$
1	$\frac{3}{10}$	$\frac{3}{5}$

Examine the independence of X and Y .
PART - B

Answer any 6 questions :
(Weightage 2 each)
12. Explain the aniomatic definition of probability.
13. A and B are two events defined on the same sample space such that $P(A)=p_{1}, P(B)=p_{2}, P(A \cap B)=p_{3}$.
Find: 1) $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
2) $P\left(A^{\prime} \cup B^{\prime}\right)$
3) $P\left(A^{\prime} \cup B\right)$
in terms of p_{1}, p_{2}, p_{3}.
14. Two balanced dice are thrown simultaneously. Find the probability that the sum of the numbers shown by the dice is

1) Greater than 8
2) Neither 7 nor 11 .
15. A bag contains 12 white, 6 red and 7 black balls. Three balls are drawn at random without replacement. What is the probability that two of them are white and the other is black?
16. State and prove Bayes theorem.
17. Define pairwise independence of three events. Show by an example that pairwise independence does not mean total independence.
18. The distribution function of a random variable X is given as follows :

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{x}<-1 \\
1 / 4 & \text { if } & -1 \leq \mathrm{x}<1 \\
2 / 3 & \text { if } & 1 \leq \mathrm{x}<5 \\
7 / 8 & \text { if } & 5 \leq \mathrm{x}<10 \\
1 & \text { if } & \mathrm{x} \geq 10
\end{array}\right.
$$

Find the probability density (mass) function.
19. A continuous random variable X has the following density function :
$f(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}$
Find the density function of $-2 \log \mathrm{X}$.
20. The random variables X and Y have the joint mass function.
$f(x, y)=\frac{1}{27}(x+2 y) ; \begin{aligned} & x=0,1,2 \\ & y=0,1,2\end{aligned}$
Find the marginal distributions.
Also find the conditional distribution of

1) Y for $X=0$ and 2) X for $Y=2$.
PART - C

Answer any two questions :
(Weightage 4 each)
21. A factory produces pipes in three plants. The daily production figures are as follows.

Plant I : 3000 numbers
Plant II : 2500 numbers
Plant III : 4500 numbers
Past experience shows that 1 percent of the pipes produced by Plant I are defective.
The corresponding percentages of defectives of Plant II and III are 1.2 percent and
2 percent respectively. A pipe is drawn at random from a day's production and is found to be defective. What is the probability that it comes from

1) Plant I
2) Plant II
3) Plant III?
22. A random variable X has the following density function :
$f(x)=k x(1-x)$ if $0 \leq x \leq 1$
1) Find the value of k.
2) Determine the number b such that $P\{X<b\}=P\{X>b\}$.
3) Also find the distribution function of X.
23. A random variable X has the following probability distribution :

Value of \mathbf{X}	$:$	1	2	3	4	5	6	7

Probability : $\begin{array}{lllllll} & k & 2 k & 2 k & 3 k & k^{2} & 2 k^{2}\end{array} \quad 7 k^{2}+k$
Find:

1) the value of k,
2) $\mathrm{P}\{\mathrm{X}<6\}$
3) $\mathrm{P}\{0<\mathrm{X}<5\}$
4) the minimum value of ' a ' such that $P\{X \leq a\}>1 / 2$.
24. Define joint probability density function, marginal and conditional probability density functions. Two random variables X and Y have the following joint density functions:
$f(x, y)=\frac{1}{4}(1+x y) ; \quad \begin{aligned} & -1<x<1 \\ & -1<y<1\end{aligned}$
Examine the independence of 1) X and $Y \quad$ 2) X^{2} and Y^{2}.
