Reg. No. :

\qquad

II Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W. Degree (CCSS-Reg./Supple./Improv.) Examination, May 2013 CORE COURSE IN MATHEMATICS 2B02 MAT : Foundation of Higher Mathematics

Time: 3 Hours
Max. Weightage: 30

1. Fill the blanks :
a) The sum of the series $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\ldots=$ \qquad
b) For $x \in \mathbb{R}$ the series $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots=\ln e^{(1+x)}$ when x belongs to the interval \qquad
c) n-th term of the series $\frac{9}{1!}+\frac{16}{2!}+\frac{27}{3!}+\frac{42}{4!}+\ldots$ is \qquad
d) Coefficient of x^{n} in the expansion of $2 x e^{2 x}$ is \qquad (Weightage 1)
2. a) The number of relations from set $A=\{a, b, c\}$ to set $B=\{1,2\}$ is \qquad
b) The set $[a]=\{x \in A: x \sim a\}$ where \sim is an equivalence relation on Set A is called \qquad
c) Let $f: R \rightarrow R$ is defined by $f(x)=x^{2}+2 x$. Then $(f \circ f)(3)=$ \qquad
d) Domain of the real valued functions $f(x)=\sqrt{x^{2}-25}$ is \qquad (Weightage 1)

Answer any five from the following (Weightage 1 each) :
3. Sum the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots$
4. Sum the series $\frac{1}{2!}+\frac{1+2}{3!}+\frac{1+2+3}{4!}+\ldots$
5. Find the matrix of the relation $R=\{(1, y),(1, z),(2, x),(2, z),(3, y),(4, x),(4, y)\}$ defined from $A=\{1,2,3,4\}$ to $B=\{x, y, z\}$.
6. Sketch the product set $[-3,2) \times(-2,2]$ in the plane R^{2}.
7. Consider the formula $f(x)=x^{2}, x \in R$. Find the largest interval D such that $f: D \rightarrow R$ is a one-to-one function.
8. Suppose $A=\{a, b, c\}$ and $B=\{1,2\}$. Then find the number of on to functions from A to B.
9. Define a partial order on a set S .
10. Prove that $\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$ for every a where a is an element of a Lattice L .
(Weightage $5 \times 1=5$)
Answer any seven from the following (Weightage 2 each).
11. Let $A=\{1,2,3,4,6\}$. Let R be a relation on A defined by x divides y.
a) Write R as a set of ordered pairs
b) Draw its directed graph
c) Find the inverse relation R^{-1} of R
d) Can R^{-1} be described in words.
12. Let A be a set of nonzero integers and let \approx be a relation on $\mathrm{A} \times \mathrm{A}$ defined as follows
$(a, b) \approx(c, d)$ whenever $a d=b c$. Prove that \approx is an equivalence relation.
13. Draw the graph of the function $f(x)=\left\{\begin{array}{ll}-x, & x \leq-1 \\ 1, & -1<x<1 \\ x^{2}, & x \geq 1\end{array}\right.$.
14. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$. Then if $\mathrm{g} \circ \mathrm{f}$ is one-to-one prove that f is one-to-one.
15. Consider the relation $R=\{(1,1),(1,3),(2,4),(3,1),(3,2),(4,3)\}$ on $A=\{1,2,3,4\}$. Find:
a) Reflexive closure of R
b) Symmetric closure of R
c) Transitive closure of R.
16. Define a lattice, sublattice and isomorphic lattices.
17. Consider the ordered set A as pictured in fig. 1 .

Fig. 1
a) Find all maximal elements and minimal elements.
b) Does A have a first element and last element.
18. If -4 is a root of $2 x^{3}+6 x^{2}+7 x+60=0$ find the other roots.
19. Find the equation whose roots are the roots of the equation $x^{4}-5 x^{3}+7 x^{2}-17 x$ $+11=0$ each diminished by 4 .
20. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+v=0$ find the value of

$$
\sum \frac{1}{\alpha^{2}}
$$

Answer any three from the following (Weightage 3 each) :
21. Show that $\sum_{n=0}^{\infty} \frac{5 n+1}{(2 n+1)!}=\frac{e}{2}+\frac{2}{e}$.
22. Sum the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{5}{3 \cdot 4 \cdot 5}+\frac{9}{5 \cdot 6 \cdot 7}+\ldots$
23. Let L be a Lattice. Then prove that
i) $a \wedge b=a$ if and only if $a \vee b=b$
ii) The relation $a \leq b$ defined by $a \wedge b=a$ Is a partial order relation on L .
24. Solve $x^{3}-18 x-35=0$, by Cardan's method.
25. If the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ be α, β, γ find the equation whose roots are $\alpha^{2}+\beta^{2}, \beta^{2}+\gamma^{2}, \gamma^{2}+\alpha^{2}$.

