Reg. No.: \qquad
Name: \qquad

II Semester B.Sc. Degree. (CCSS - Supple./Improv.)
 Examination, May 2015
 (2013 and Earlier Admn.)
 CORE COURSE IN MATHEMATICS
 2B02 MAT : Foundations of Higher Mathematics

Time : 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) $2\left(x+X^{3} / 3+x^{5} / 5+\ldots.\right)=$
b) $1-1 / 2+\frac{1}{3}-\frac{1}{4}+\ldots=$
\qquad
c) The n-th term of the series $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots$ is \qquad
d) $\lim _{n \rightarrow \infty} \frac{1}{(1-1 /)^{n}}$.
(Weightage 1)
2. Fill in the blanks :
a) The dual of $(B \cap C) \cup A=(B \cup A) \cap(C \cup A)$ is \qquad
b) If $A=\{1,2,3,4\}, B=\{x, y, z\}$ and if R is the relation from A to B defined by $R=\{(1, y),(1, z),(3, y),(4, x),(4, z)\}$, then $R^{-1}=$ \qquad
c) If $S=\{a, b\}, W=\{1,2,3,4,5\}$ and $V=\{3,5,7,9\}$ then $(S \times W) \cap(S \times V)$ is \qquad
d) If the function $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $h(x)=(x+3)$, which of the following ordered pairs does not belongs to graph of h : $(4,7),(-6,-9),(2,6),(-1,2)$ $(4,7),(-6,-9),(2,6),(-1,2)$.
(Weightage 1)
3. Sum the series $1-\frac{1}{4}+\frac{1.3}{4.8}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots$. .
4. If $n=\frac{1}{e}-\frac{1}{2 e^{2}}+\frac{1}{3 e^{3}} \ldots \ldots .$. , show that $e^{n+1}-e-1=0$.
5. Prove that $(A \cap B) \cup\left(A \cap B^{\prime}\right)=A$
6. If $A=\{a, b, c, d, e, f, g\}$, examine whether each of the following families of sets is a partition of A. Give reasons.
a) $\left\{B_{1}=\{a, c, e\}\right\},\left\{B_{2}=\{b\}\right\},\left\{B_{3}=\{d, g\}\right\}$
b) $\left\{C_{1}=\{\mathrm{a}, \mathrm{e}, \mathrm{g}\}\right\},\left\{\mathrm{C}_{2}=\{\mathrm{c}, \mathrm{d}\}\right\},\left\{\mathrm{C}_{3}=\{\mathrm{b}, \mathrm{e}, \mathrm{f}\}\right\}$
c) $\left\{D_{1}=\{a, b, e, g\},\left\{D_{2}=\{c\}\right\},\left\{D_{3}=\{d, f\}\right\}\right.$
7. If ' \sim ' is a relation on the set of natural numbers defined by $(a, b) \sim(c, d)$ if and only if $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$, then prove that ' \sim ' is an equivalence relation.
8. If R and R^{\prime} are symmetric relations on a set A, prove that $R \cap R^{\prime}$ is also a symmetric relation on A .
9. If the relation in N defined by " x divides y " is a partial order, then insert the correct symbol, <, > or || between each pair of numbers :
a) 3 18
b) 18 24
c) 9 .3
d) 5 .15
10. Define lattice.
(Weightage $5 \times 1=5$)
Answer any seven from the following :
11. If R and R^{\prime} are symmetric relations defined on a set A, prove that $R \cup R^{\prime}$ is also a symmetric relation.
12. If f and g are functions defined on the set of all real numbers by $f(x)=x^{2}+3 x+1$ and $g(x)=2 x-3$, find $f \circ g$ and $g \circ f$.
13. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is an onto function and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ is also onto, prove that $\mathrm{g} \circ \mathrm{f}$ is also onto.
14. If $f: A \rightarrow B$ and $g: B \rightarrow C$ have inverse functions $f^{-1}: B \rightarrow A$ and $g^{-1}: C \rightarrow B$, show that $g \circ f$ has an inverse function which is $f^{-1} \circ g^{-1}: C \rightarrow A$.
15. If $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove the following :
a) if g of is one-to-one, then f is one-to-one
b) if $g \circ f$ is onto, then g is onto.
16. If f is a one-to-one and onto function defined on real numbers by $f(x)=2 x-3$, find a formula that defines the inverse function f^{-1}.
17. If $A=\{2,3,4, \ldots$.$\} is order by " x$ divides y ", then find (a) all minimal elements of A and (b) all maximal elements of A.
18. If L is a finite complemented distributive lattice, then show that every element a in L is a join of a unique set of atoms.
19. It α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the value of (i) $\sum \alpha^{2} \beta$ and (ii) $\sum \alpha^{2}$.
20. Find the equation whose roots are the roots of the equation $x^{4}-5 x^{3}+7 x^{2}-17 x+11=0$ each diminished by 2.
(Weightage $7 \times 2=14$)
Answer any three from the following :
(Weightage 3 each)
21. If α, β, γ are the roots of $\mathrm{x}^{3}+\mathrm{px}+\mathrm{q}=0$ form the equation whose roots are $\alpha^{2}+\beta \gamma, \beta^{2}+\gamma \alpha, \gamma^{2}+\alpha \beta$.
22. Prove that $\sum_{n=0}^{\infty} \frac{5 n+1}{(2 n+1)!}=\frac{e}{2}+\frac{2}{e}$.
23. Show that $\frac{1}{2.3 .4}+\frac{1}{4.5 .6}+\frac{1}{6.7 .8}+\ldots=\frac{3}{4}-\log 2$.
24. If $\alpha+\beta+\gamma=3, \alpha^{2}+\beta^{2}+\gamma^{2}=5$, and $\alpha^{3}+\beta^{3}+\gamma^{3}=7$, form the cubic equation whose roots are α, β, γ.
25. Solve the equation $x^{3}-9 x+28=0$ by Cardan's method.
