

Reg. No. :

Name :

Il Semester B.Sc. Degree (CCSS – Supple./Improv.) Examination, May 2015 (2013 and Earlier Admn.) CORE COURSE IN MATHEMATICS 2B02 MAT : Foundations of Higher Mathematics

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) $2(x + \frac{X^3}{3} + \frac{X^5}{5} +) = -$
 - b) $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots =$ ____ 8. If R and R' are symmetric relations on a set A, prove that R r R' is a
 - c) The n-th term of the series $\frac{1}{1.3} + \frac{1}{2.5} + \frac{1}{3.7} + \dots$ is _____
 - d) $\lim_{n \to \infty} \frac{1}{(1 \frac{1}{2})^n}$.

(Weightage 1)

- 2. Fill in the blanks :
 - a) The dual of $(B \cap C) \cup A = (B \cup A) \cap (C \cup A)$ is _____
- b) If A = $\{1, 2, 3, 4\}$, B = $\{x, y, z\}$ and if R is the relation from A to B defined by $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}, \text{ then } R^{-1} =$ _____ TL ILB and B' and

If the relation in N defined by "x divides y" is a

- c) If S = {a, b}, W = {1, 2, 3, 4, 5} and V = {3, 5, 7, 9} then $(S \times W) \cap (S \times V)$ is 12. If I and g are functions defined on the set of all real numbers by
- d) If the function h : $\mathbb{R} \to \mathbb{R}$ is defined by h(x) = (x + 3), which of the following ordered pairs does not belongs to graph of h: (4, 7), (-6, -9), (2, 6), (-1, 2)(4, 7), (-6, -9), (2, 6), (-1, 2).(Weightage 1)

P.T.O.

M 8734

M 8734

- 3. Sum the series $1 \frac{1}{4} + \frac{1.3}{48} \frac{1.3.5}{4812} + \dots$
- 4. If $n = \frac{1}{e} \frac{1}{2e^2} + \frac{1}{3e^3}$, show that $e^{n+1} e^{-1} = 0$.
- 5. Prove that $(A \cap B) \cup (A \cap B') = A$
- 6. If A = {a, b, c, d, e, f, g}, examine whether each of the following families of sets is a partition of A. Give reasons.
 - a) $\{B_1 = \{a, c, e\}\}, \{B_2 = \{b\}\}, \{B_3 = \{d, g\}\}$
 - b) $\{C_1 = \{a, e, g\}\}, \{C_2 = \{c, d\}\}, \{C_3 = \{b, e, f\}\}$
 - c) $\{D_1 = \{a, b, e, g\}\}, \{D_2 = \{c\}\}, \{D_3 = \{d, f\}\}$
- 7. If '~' is a relation on the set of natural numbers defined by $(a, b) \sim (c, d)$ if and only if a + d = b + c, then prove that '~' is an equivalence relation.
- 8. If R and R' are symmetric relations on a set A, prove that $R \cap R'$ is also a symmetric relation on A.
- 9. If the relation in N defined by "x divides y" is a partial order, then insert the correct symbol, <, > or || between each pair of numbers :

a) 3	18	b) 1824
c) 9	3	d) 515

10. Define lattice.

Answer any seven from the following : (Weightage 2 each)

(Weightage 5×1=5)

- 11. If R and R' are symmetric relations defined on a set A, prove that $R \cup R'$ is also a symmetric relation.
- 12. If f and g are functions defined on the set of all real numbers by $f(x) = x^2 + 3x + 1$ and g(x) = 2x - 3, find $f_{\circ}g$ and $g_{\circ}f$.
- 13. If $f: A \rightarrow B$ is an onto function and $g: B \rightarrow C$ is also onto, prove that $g \circ f$ is also onto.

-2-

- 14. If $f : A \rightarrow B$ and $g : B \rightarrow C$ have inverse functions $f^{-1} : B \rightarrow A$ and $g^{-1} : C \rightarrow B$, show that $g \circ f$ has an inverse function which is $f^{-1} \circ g^{-1} : C \rightarrow A$.
- 15. If $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove the following :
 - a) if gof is one-to-one, then f is one-to-one
 - b) if $g \circ f$ is onto, then g is onto.
- 16. If f is a one-to-one and onto function defined on real numbers by f(x) = 2x 3, find a formula that defines the inverse function f^{-1} .
- 17. If A = {2, 3, 4, } is order by "x divides y", then find (a) all minimal elements of A and (b) all maximal elements of A.
- 18. If L is a finite complemented distributive lattice, then show that every element a in L is a join of a unique set of atoms.
- 19. It α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of (i) $\sum \alpha^2 \beta$ and (ii) $\sum \alpha^2$.
- 20. Find the equation whose roots are the roots of the equation $x^4 5x^3 + 7x^2 17x + 11 = 0$ each diminished by 2. (Weightage

(Weightage 7x2=14)

Answer any three from the following :

(Weightage 3 each)

- 21. If α , β , γ are the roots of $x^3 + px + q = 0$ form the equation whose roots are $\alpha^2 + \beta \gamma$, $\beta^2 + \gamma \alpha$, $\gamma^2 + \alpha \beta$.
- 22. Prove that $\sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!} = \frac{e}{2} + \frac{2}{e}$.
- 23. Show that $\frac{1}{2.3.4} + \frac{1}{4.5.6} + \frac{1}{6.7.8} + \dots = \frac{3}{4} \log 2$.
- 24. If $\alpha + \beta + \gamma = 3$, $\alpha^2 + \beta^2 + \gamma^2 = 5$, and $\alpha^3 + \beta^3 + \gamma^3 = 7$, form the cubic equation whose roots are α , β , γ .
- 25. Solve the equation $x^3 9x + 28 = 0$ by Cardan's method. (Weightage 3x3=9)