K24P 0024

Reg. No. :

Name :

V Semester M.C.A./M.C.A. (Lateral Entry) Degree (C.B.S.S. – Supplementary-One Time Mercy Chance) Examination, November 2023 (2014 to 2019 Admissions) MCA 5E09 : OPERATIONS RESEARCH (Elective – III)

Time : 3 Hours

Max. Marks: 80

SECTION - A

Answer any ten questions. Each question carries 3 marks.

- 1. What are the uses of linear programming ?
- 2. Distinguish between feasible solution and optimal solution.
- 3. What are artificial variables and why are they introduced ?
- 4. Define duality with an example.
- 5. How are the unbalanced assignment problems solved ?
- 6. Explain the concept behind the branch and bound method of solving the integer programming problem.
- 7. What are the steps in solving dynamic programming problem ?
- 8. Define PERT and its characteristics.
- 9. What are sequencing problems ?
- 10. Explain stochastic process.
- 11. What is birth and death process ?
- 12. Explain queue discipline.

(3×10=30)

K24P 0024

5

5

10

SECTION – B

-2-

Answer all questions. Each question carries 10 marks.

- 13. a) i) Explain the characteristics of linear programming problems.
 - ii) Write the standard form of a mathematical model of LPP and explain the terms.

OR

b) Solve using two phase simplex method : Minimize $Z = 2x_1 + 3x_2$

Subject to $x_1 + x_2 \ge 5$

- $x_1 + 2x_2 \ge 6$ $x_1, x_2 \ge 0$
- 14. a) Find the initial feasible solution to the transportation problem given below : 10

	Destination			Supply	
c	DD1	D ₂	D ₃		
5	7	3	4	2	
000	2	01	3	3	
~ 1	3	4	6	5	
Demand	4/	1	5	Constant of	/A/
<	۷	XTA)			
	ØR	V	NUG	THE	~ ~

b) Solve the following LPP :

 $\begin{array}{ll} \text{Maximize} & Z = x_2 + 3x_3 \\ \text{Subject to} & x_1 + x_2 + x_3 \leq 10 \\ & 3x_1 - 2x_3 \geq 0 \\ & 2x_2 - x_3 \leq 10 \\ & 0 \leq x_1 \leq 8 \\ & 0 \leq x_2 \leq 4 \ , \ x_3 \geq 0 \end{array}$

10

-3-

K24P 0024

15. a) Maximize $Z = x_1 + 10x_2$	
Subject to $4x_1 + 3x_2 \le 36$	
$2x_1 + 4x_2 \le 40$	
x ₂ ≥3	
$x_1, x_2 \ge 0$ and x_1, x_2 are integers.	10
OR	
b) Solve using dynamic programming :	
Minimize $Z = u_1^2 + u_2^2 + u_3^2$	
Subject to $u_1 + u_2 + u_3 \ge 15$	
$u_1, u_2, u_3 \ge 0$	10
16. a) Write a short note on different types of floats and its characteristics.	10
OR	
b) 1) Draw the network diagram to the following activities.	5
Activity (i, j) : 1-3 1-2 1-4 2-4 3-5 4-6 5-6	
Time duration : 2 4 3 1 6 5 7	
2) Find critical path in the above diagram.	5
17. a) Write a note on classification of the states in a Markov chain.	10
OR UNIVER	
b) Arrivals at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The duration of a phone call assumed to be distributed exponentially, with 3 minutes. Then,	
i) What is the probability that a person arriving at the booth will have to wait ?	3
ii) What is the fraction of the time the phone will be in use?	3
iii) Find the average number of units in the system.	4

(5×10=50)